提到“人工智能+”,现在最火、最核心的技术就是“大模型”。不管是聊天机器人、AI绘画,还是医疗诊断、工业质检,背后都离不开大模型的支撑。它就像“人工智能+”的“发动机”,决定了整个技术体系能跑多快、能覆盖多少场景。接下来咱们就从技术原理、发展格局、能力边界三个方面,用大白话把大模型讲明白,看看它到底是怎么工作的,又能在哪些地方发挥作用。
一、技术原理:Transformer架构+“预训练-微调”,大模型的“两大法宝”
大模型之所以能理解咱们说的话、生成想要的内容,核心靠的是两个技术支撑:一个是“Transformer架构”(相当于大模型的“骨架”),另一个是“预训练-微调”模式(相当于大模型的“学习方法”)。这两个“法宝”结合起来,才让大模型具备了从“读数据”到“拥有能力”的跨越。
先说说“Transformer架构”,这东西是2017年谷歌公司提出来的,最大的创新点叫“自注意力机制”。咱们可以把这个机制理解成大模型的“眼睛”——它在看一段文字、一张图片的时候,能自动“盯”住里面关联紧密的部分,搞清楚谁和谁有关系。
举个例子,当大模型处理“人工智能推动产业变革”这句话时,“自注意力机制”会立刻发现:“人工智能”是“推动”这个动作的发出者,“产业变革”是这个动作的接收者,三者之间存在“谁做了什么、影响了谁”的逻辑关系。有了这个能力,大模型就不会像以前的AI那样,只能逐字逐句读文字,而是能真正理解句子的语义,就像咱们人类读句子时会自动梳理逻辑一样。
而且,Transformer架构还有个很大的优势——“并行计算能力强”。以前的AI模型(比如RNN循环神经网络)处理数据,得像咱们读小说一样,从第一句读到最后一句,一句没读完就没法读下一句,效率很低。但Transformer架构能同时处理一整段数据,比如同时分析一句话里的所有词语,或者一张图片里的所有像素,就像很多人一起干活,速度比一个人干快多了。正因为有这个能力,现在才能训练出千亿、万亿参数的超大模型(参数越多,模型能记住的知识和处理的任务越复杂),要是还靠以前的架构,可能训练一次模型就得花好几年,根本没法实用。
再看“预训练-微调”模式,这个模式解决了大模型的一个关键矛盾:既要“啥都会”(通用性),又要“某方面很精通”(场景适配性)。咱们可以把这个过程类比成“上学+实习”,特别好理解。
第一步是“预训练阶段”,相当于让大模型“上大学,广泛学知识”。这个阶段,工程师会给大模型喂海量的“无标注数据”——就是没经过人工标记的原始数据,比如整个互联网的公开文本(新闻、小说、论文)、海量的图片库、音频文件等等。大模型在这个阶段会“疯狂读书”,从数据里学到通用的语言规律(比如中文的语法、常用搭配)、基础的知识图谱(比如“北京是中国的首都”“苹果既是水果也是手机品牌”),还有简单的逻辑推理能力(比如“因为下雨,所以地面会湿”)。这个阶段结束后,大模型就有了“基础知识储备”,能处理一些通用任务,比如回答常识问题、写简单的句子。
第二步是“微调阶段”,相当于让大模型“去实习,专攻某一行”。虽然预训练后的大模型啥都懂点,但面对具体行业的需求,还是不够专业——比如让它看病历、给病人提诊断建议,它就会“犯懵”,因为预训练时没学过医疗知识。这时候,工程师就会用“少量场景化标注数据”来调整模型,比如医疗领域的病历数据(标注了“症状-疾病-治疗方案”的对应关系)、金融领域的交易数据(标注了“交易行为-风险等级”)。大模型通过学习这些专业数据,就能快速掌握行业知识,适配特定场景。比如把预训练大模型用医疗数据微调后,它就能辅助医生看CT片、分析病历;用金融数据微调后,就能识别可疑交易、预测市场风险。
这个模式最大的好处是“省钱、高效”。如果每个场景都要从零开始训练大模型,比如为医疗、金融、教育分别建一个模型,那需要的算力和数据会是现在的好几倍,成本高到大多数企业都承受不起。而“预训练-微调”模式能实现“一次预训练,多次微调”——一个基础的预训练模型,稍微改改就能用到多个行业,大大降低了开发成本,也让大模型能更快地落地到各个领域。
二、发展格局:通用大模型+垂直大模型,“全能选手”和“专业高手”互补
现在大模型的发展已经不是“一刀切”了,而是分成了两大阵营:“通用大模型”和“垂直领域大模型”。这就像职场里的“全能选手”和“专业高手”——前者啥都会,能应对各种基础需求;后者在某一行做到顶尖,能解决专业难题。两者各有优势,又能互相配合,一起推动“人工智能+”落地到各行各业。
本小章还未完,请点击下一页继续阅读后面精彩内容!
喜欢大白话聊透人工智能请大家收藏:(m.qbxsw.com)大白话聊透人工智能全本小说网更新速度全网最快。