死在火星上

天瑞说符

首页 >> 死在火星上 >> 死在火星上全文阅读(目录)
大家在看从超越柯南开始 HP:我在斯莱特林做团宠 斗罗2:病弱妹妹是团宠 我怎么还活着? 自遮天世界开始 从空间之力至诸天 反派大师兄,师妹们全是病娇 四合院:从保安开始 美剧大世界里的骑士 诸天影视剧变 
死在火星上 天瑞说符 - 死在火星上全文阅读 - 死在火星上txt下载 - 死在火星上最新章节 - 好看的其他小说

对火星轨道变化问题的最后解释

上一页书 页下一页阅读记录

In this paper we present preliminary results of six long-term numerical integrations on all nine planetary orbits, covering a span of several 109 yr, and of two other integrations covering a span of ± 5 × 1010 yr. The total elapsed time for all integrations is more than 5 yr, using several dedicated PCs and workstations. One of the fundamental conclusions of our long-term integrations is that Solar system planetary motion seems to be stable in terms of the Hill stability mentioned above, at least over a time-span of ± 4 Gyr. Actually, in our numerical integrations the system was far more stable than what is defined by the Hill stability criterion: not only did no close encounter happen during the integration period, but also all the planetary orbital elements have been confined in a narrow region both in time and frequency domain, though planetary motions are stochastic. Since the purpose of this paper is to exhibit and overview the results of our long-term numerical integrations, we show typical example figures as evidence of the very long-term stability of Solar system planetary motion. For readers who have more specific and deeper interests in our numerical results, we have prepared a webpage (access ), where we show raw orbital elements, their low-pass filtered results, variation of Delaunay elements and angular momentum deficit, and results of our simple time–frequency analysis on all of our integrations.

In Section 2 we briefly explain our dynamical model, numerical method and initial conditions used in our integrations. Section 3 is devoted to a description of the quick results of the numerical integrations. Very long-term stability of Solar system planetary motion is apparent both in planetary positions and orbital elements. A rough estimation of numerical errors is also given. Section 4 goes on to a discussion of the longest-term variation of planetary orbits using a low-pass filter and includes a discussion of angular momentum deficit. In Section 5, we present a set of numerical integrations for the outer five planets that spans ± 5 × 1010 yr. In Section 6 we also discuss the long-term stability of the planetary motion and its possible cause.

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

喜欢死在火星上请大家收藏:(m.qbxsw.com)死在火星上全本小说网更新速度全网最快。

上一页目 录下一页存书签
站内强推诡秘之主 轮回乐园 穿在1977 太古龙象诀 蛊真人 重生都市仙帝 都市古仙医 最豪赘婿 豪婿 邪王嗜宠:神医狂妃 神级插班生 官场之绝对权力 战气凌霄 我不是戏神 武逆九千界 成神风暴 最强超级学霸 随身空间:重返山村去种田 四合院:咸鱼的美好生活 透视邪医混花都 
经典收藏诡秘之主 DC新氪星 美漫地狱之主 海贼:冥王哈迪斯! 全民精灵,我有一群精灵姬 美剧大世界里的骑士 神豪签到系统:从9块9秒杀开始 海贼之掌控矢量 穿越者纵横动漫世界 火影:重生鸣人,开局获得别天神 影视世界的逍遥人生 超人的赛亚人弟弟 崩坏曝光,拯救世界的我被遗忘了 从空间之力至诸天 混在妖尾的魔导商人 诸天之我是传奇 四合院大国工匠 系统流主角的我加入聊天群 东京武侠故事 火影之千叶传说 
最近更新初恋大佬软又甜 我带着前世家人一起重生了 一夜双胞:封少追妻请排队 在崩坏的宇智波 团宠大佬,夫人马甲A爆了 男神的花式撩法 快穿大佬:那些被迫当团宠的日子 快穿之拯救黑化boss 快穿:这个宿主她千娇百媚 满级传球的我,梅西C罗馋哭了 死心后,豪门前任跪求我回头 校草的蜜宠甜心 暴君翻脸后,绿茶美人一秒变乖 快穿:反派总是女装大佬 病娇女王:五个哥哥跪着求我原谅 快穿:开局送六个妹控哥哥 穿书七十年代吃瓜群众的自我修养 稳住,我们能赢 静空若思 大佬,你马甲又掉了 
死在火星上 天瑞说符 - 死在火星上txt下载 - 死在火星上最新章节 - 死在火星上全文阅读 - 好看的其他小说