重生之AI教父

CloseAI

首页 >> 重生之AI教父 >> 重生之AI教父最新章节(目录)
大家在看我不是戏神 都重生了谁谈恋爱啊 全球异能:开局觉醒紫霄神雷 重生:1977 幸福生活从1949年开始 重生1984老婆孩子热炕头 女主全白给,你说你是反派?! 我成仙帝后,带着无上修为回来了 绝世强龙 技能多而已,为什么都说我是神? 
重生之AI教父 CloseAI - 重生之AI教父全文阅读 - 重生之AI教父txt下载 - 重生之AI教父最新章节 - 好看的都市小说

第190章 从变分自编码到扩散模型

上一章书 页下一页阅读记录

“你们有没有看过变分自编码器(VAE)的那篇论文?”

孟繁岐和阿里克斯,伊利亚三人一边做着餐前准备,一边闲聊道。

就在孟繁岐去年提出生成对抗模型GAN之后,同年年底有一个类似的生成式模型被提出,那就是变分自编码器。

VAE和孟繁岐提出的GAN都是深度生成式模型,两者均被视为无监督式学习领域最具研究价值的方法。

“当然看过,它的思路跟你的GAN挺像的,都是从隐藏变量去生成目标数据。”

变分自编码器的反响和热度比孟繁岐的GAN低了一些,一是因为先入为主,孟繁岐的GAN珠玉在前。

另一方面也是因为GAN两个网络对抗的思路和结构太过新奇,非常独特有创意,而且即便是领域外的人也容易理解。

相比之下,变分自编码器则显得更加朴实无华一点。

“其实原理都差不多,你们都假设隐藏变量服从某种概率分布,目的就是为了训练一个模型,可以将原本的概率分部映射到训练集的概率分布,是一种对这种分布的变换。”

伊利亚简单总结道。

伊利亚正是年轻力壮的时候,有天赋又努力。

完全是论文机器,看得多写得多,对领域内的新东西门儿清。

阿里克斯则已经稍微有点划水的兆头了,看论文不求甚解,主要读一个大概的意思和想法。

“呦,年轻人们真有活力啊,都这么努力好学?饭前这点时间也要头脑风暴一下?”

辛顿手里端着一杯果汁,溜达过来,发现自己的两个学生竟然在这个庆功宴上还忙着讨论学术,很是欣慰地调侃道。

“我们在谈论生成式模型的问题,孟似乎有一些新想法。”

“什么内容,说来听听。”

“VAE和GAN都是希望生成的数据分布和目标分布十分接近,这种接近听上去很棒,可实际上难以量化。”

孟繁岐解释道:“两个输出,比如图像,他们的分布到底是不是相等或者接近,缺乏足够好的量化标准与价值判断。”

“GAN其实就是大力出奇迹的意思了,我也不管到底怎么评判,干脆整个就把这种隐含的衡量方式给学过来,这就导致对计算量和数据的要求非常大,并且也不是那么容易控制。”

“而变分自编码器的方式其实优雅不少,很值得我借鉴。”

辛顿听完微微扬眉,学界不少年轻天才甚至老学究,都对自己的技术盲目自信和吹捧。

甚至不乏那种相互之间斗嘴皮子,争夺某某技术首发头衔的情况。

像孟繁岐这样,没几个月就开始反思自己技术不足之处的,还挺少见的。

毕竟目前学界对GAN的评价是相对更高的,后续跟进的研究也更多。

“我们首先理解一下生成模型的本质,其实就像是一百个样本里采样十个,我们称呼这十个为X,用这个十个样本学到它的分布p(X)。使用这个分布,就能够得到未被采样的数据。”

辛顿也加入了进来,他直接从最基础的部分开始分析。

“现在的问题就是,这个分布太难了,没法直接学到。因此我们退而求其次,使用一个满足特定分布的隐变量Z来生成这些样本X。计算p(X)=SUMz(p(X|Z)p(Z)),其中p(X|Z)为后验分布,p(Z)是先验分布。”

“VAE的核心就是假设了p(Z)和每一个p(Xi|Z)均为正态分布。他的学习是Xi和Z的关系,而不是你的GAN里面,X与X'的关系。”

辛顿的分析非常老辣,直指最关键的地方。

“这一点确实比GAN简单了很多。”

孟繁岐不得不承认这一点,已经知道是正态分布的情况下,这种学习就是小学二年级知识内容了,学均值和方差就可以。

Z是我们自己假设的,Xi是采样已知的,这种学习方式很容易就能学到这些已知的样本。

VAE通过专属与某个样本的Zi建立了X与X'之间原本很难学习对比的问题,属于相当聪明的做法。

不过这也导致VAE有时候生成的图像比较糊,不如GAN清晰。

前面说的这些部分属于是AE,自编码器,而V指得则是在自编码器基础上添加的正态分布的随机采样,也就是高斯噪声。

这种噪声的添加,使得希望获得的生成器对噪声和干扰比较鲁棒,生成器训练不好的时候,噪声会低一些,生成器逐渐效果很好的时候,噪声又会增加。

本质上和GAN非常类似。

而孟繁岐想要提出的扩散模型,则是VAE的一种升级版本,同样的,也是GAN的一种升级版本。

它集合了两家之长,取其精华去其糟粕。

“变分自编码器有一个核心的问题,就是这个变分后验p(X|Z)表达能力和计算代价鱼和熊掌不可兼得。变分方法如果简单,表达能力就不丰富;而复杂的变分计算,计算损耗又太大了。”

本小章还未完,请点击下一页继续阅读后面精彩内容!

喜欢重生之AI教父请大家收藏:(m.qbxsw.com)重生之AI教父全本小说网更新速度全网最快。

上一章目 录下一页存书签
站内强推大奉打更人 剑来 从赘婿开始建立长生家族 汉乡 欢迎来到我的地狱 工厂里的夫妻 没人告诉我魔法学校一群神经呀 村欲乱 玩家请上车 青云官路:从小职员到封疆大吏 系统赋我长生,活着终会无敌 四合院:垂钓诸天万物 透视眼鉴宝赌石,开局十万倍利润 捡到一个末世世界 四合院:咸鱼的美好生活 临高启明 军婚,末世大佬嫁兵王,遇强则强 万古神帝 领主求生之天赋合成 星穹:我堕入深渊,助你重返人间 
经典收藏我在精神病院学斩神 重返84:从收破烂开始致富 神豪:开局十连抽亿万奖励 我一个明星,搞点副业很合理吧? 警察叔叔快查他!他不像是演的! 港片:洪兴大佬的正能量系统 反派:开局被主角妈妈暗恋 赶海:开局一把沙铲承包整个沙滩 四合院之合家欢乐 逍遥农场 从卖鱼摆摊开始的幸福生活 娱乐之快意人生 综影从欢乐颂开始 权力巅峰:从基层公务员开始 被绿了,系统送我一个女明星! 年代1960:穿越南锣鼓巷, 重生1995之商娱帝国 跑男:开局撕名牌,白露崩溃 综艺:我明星,你给我阴间技能? 逼我重生是吧 
最近更新表白病娇后,我选择速通小黑屋 新婚之夜,他悬梁 订婚找前任,我娶千金总裁你哭啥 变异称霸:我身体竟然发生了异变 让你cos女帝,没让你请出本尊 骂谁害群之马呢,叫我警神 重生后我拥有无限火力 铁路职工 深山林场:重返83打猎发家 华娱:开局拿下赵小影 官场:书记的第一红人 穿越60:我在南锣鼓巷82号 娱乐:从跑男开始成为世界顶流 情满四合院之傻柱重生 我觉醒了天赋之灵 子不语之罗阳的乡村崛起 全民转职:百万亡灵无限进化 冷面女总裁:爱上普通小直男 小时候救的校花,长大后她倒追我 深夜绝伦 
重生之AI教父 CloseAI - 重生之AI教父txt下载 - 重生之AI教父最新章节 - 重生之AI教父全文阅读 - 好看的都市小说